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Organic molecules are known for their stability due to aromaticity.  Superhalogens, on the other 

hand, are highly reactive anions, whose electron affinity is larger than that of chlorine.  This 

thesis, using first principles calculations, explores possible methods for creation of superhalogen 

aromatic molecules while attempting to also develop a fundamental understanding of the 

physical properties behind their creation.  The first method studied uses anionic cyclopentadienyl 

and enhances its electron affinity through ligand substitution or ring annulation in combination 

with core substitutions.  The second method studies the possibilities of using benzene, which has 

a negative electron affinity (EA), as a core to attain similar results.  These cases resulted in EAs 

of 5.59 eV and 5.87 eV respectively, showing that aromaticity rule can be used to create strong 

anionic organic molecules.  These studies will hopefully lead to new advances in the 

development of organic based technology.  
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Introduction 

 

1.1 Overview 

Superhalogens are a class of molecules whose electron affinities are larger than that of 

any halogen atom. As a result, superhalogens not only form stable salts but, due to the strong 

oxidizing properties of their parent species, also play a major role in the synthesis of new 

compounds. Consequently, there is a growing interest in a fundamental understanding of the 

structure, stability, and properties of these molecules, and in finding ways to enlarge their scope. 

For example, superhalogens were originally conceived
1
 to have a metal atom, M, at their core 

surrounded by halogen atoms, X, whose number exceed the maximal valence, k, of the metal 

atom by one, namely MXk+1.  In the 1980’s and 1990’s many superhalogens were designed by 

considering simple metal atoms (M=Li, Na, Mg, Al, ...) at the core, and halogen atoms (X=F, Cl) 

as ligands
2,3,4,5

. The first experimental proof of superhalogens came from Wang’s group in 

1999
6
. Since then, a considerable amount of work has been done to design and synthesize new 

superhalogens and understand their atomic structure and properties
7,8,9,10,11,12,13

. These include 

new superhalogens with transition metal atoms at the core
14

, and/or O, NO3, CN, BH4, and BF4 

moieties as ligands
15,16,17,18,19

. Superhalogens such as borane derivatives that contain neither a 

metal nor a halogen atom have also been designed
20

. In addition, it was recently shown
21

 that a 

new class of highly electronegative ions can form if superhalogens, instead of halogens, are used 

as ligands. This new species, called hyperhalogens, have electron affinities larger than that of 

their superhalogen building blocks and open the door to the synthesis of powerful oxidizing 
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agents. Recent works have shown that these highly electronegative ions can be used to oxidize 

water
22

, as well as increase the oxidation state of metal atoms
23

. 

1.2 Motivation 

Electron counting rules
24

 have played a significant role in the design and synthesis of 

many of the recently discovered super- and hyperhalogens. Commonly used rules are the octet 

rule, 18-electron rule, and the Wade-Mingos rule. The octet rule which requires that for a 

molecule to be stabilized or an atom to be chemically inert, the outer s and p valence electrons 

must be completely full (s
2
 p

6
). This rule normally applies to light elements with atomic numbers 

less than 20. Since halogen atoms have an outer electron configuration of s
2
 p

5
, only one electron 

is needed to complete the shell closing, and hence they possess large electron affinities. The 18-

electron rule, on the other hand, applies to molecules containing transition metal elements, and 

requires s
2
, p

6
, and d

10
 orbitals to be full. As an example, consider Au12Ta

25
; with Au and Ta 

respectively contributing 1 and 5 valence electrons each, Au12Ta has 12+5=17 outer electrons 

and needs only one electron to satisfy the 18-electron rule. Hence, its electron affinity should be 

high, and this has been confirmed experimentally25. It has also been shown that the Wade-

Mingos rule which requires (n+1) pairs of electrons for stable cage-bonding can be used to 

design superhalogens. An example in this category is borane derivatives.  Borane molecules 

forming polyhedral cages with n vertices have the formula BnHn
2-

. Thus, if one can replace one B 

atom by a C atom or add one extra H atom to BnHn
2-

, the corresponding molecules CBn-1Hn or 

BnHn+1 would require only one electron to satisfy the Wade-Mingos rule. These rules have led to 

molecules with predicted electron affinities as high as 14 eV
26

, although the highest confirmed 

experimentally has been around 9 eV
27

.  
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Until now, all of the known superhalogens have been inorganic in nature, and organic 

molecules with electron affinities even approaching those of halogen atoms are not known. The 

possibility that the aromaticity
28,29

 rule that accounts for the stability of organic molecules can be 

used to design superhalogens could lead to new developments in the fields of organic catalysis 

and development of organic based technology.  

1.3 Superhalogen behavior by core or ligand substitution in aromatic molecules using C5H5 

Aromaticity is a chemical property associated with planar conjugated cyclic systems like 

Benzene, and makes use of free delocalized π electrons to improve its high stability and unusual 

reactivity patterns. In 1930, Hückel published his finding on  systems by using molecular 

orbital theory, which is referred to as Hückel molecular orbital theory (HMO). Later, in 1931
30

, 

he generalized and extended this theory to benzene and concluded that any conjugated 

monocyclic polyene that is planar and has (4n+2) π and/or nonbonding electrons, with n = 0, 1, 

2, … etc., will exhibit special stability associated with aromaticity. It was not until 1951 that 

Huckel’s (4n+2) π concept was formally clarified by Doering
31

. Although Hückel’s aromaticity 

concept has a great impact in organic chemistry, it has been found not to be valid for several 

compounds like pyrene, coronene, etc., which have more than three fused cyclic rings. Recently, 

the concept of aromaticity has been extended to 3D molecules. In 2000 Hirsch et. al.
32

 gave the 

2)1(2 N  electron rule for fullerene aromaticity. According to these authors, this rule should 

be applicable to all conjugated  systems, including inorganic molecules having symmetrically 

distributed nuclei over a spherical surface. The aromaticity concept has been further extended to 

include metals as well through σ and δ bond delocalization, though this is still a hotly debated 

topic
33

.   
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A classic example of an aromatic molecule is benzene, C6H6 which has 6 π electrons 

(n=1), and a negative electron affinity, namely -1.15 eV
34

. C5H5, on the other hand, has 5 π 

electrons, and needs one more electron to be aromatic. Consequently, the electron affinity of 

C5H5, namely, +1.79 eV
35

 is significantly larger than that of C6H6. However, it is much less than 

that of any halogen atom. Thus, it is not immediately apparent if molecules designed by 

following aromaticity concepts can exhibit superhalogen properties. This is because aromatic 

molecules are usually characterized by covalent bonding where the electrons are localized along 

the bonds. In a superhalogen, on the other hand, the electrons should be delocalized over a large 

phase space so that the electron-electron repulsion associated with the added electron is limited.  

To form superhalogens, the electron affinity of C5H5 should be cultivated towards larger values 

by further delocalizing the free π electrons. I have explored two possible methods to enact this 

effect.  The first is by replacing the H atoms of C5H5 with ligands, and the second is by replacing 

the C atoms while keeping the 4n+2 delocalized π electrons unchanged.  I also show that the 

effect of the second method can be expanded by the annulation of more rings to the system, 

granting more potential substitution sites.   

1.4 Induction of superhalogen behavior in organic molecules  

 In the prior section, we addressed the possibility of forming superhalogens from aromatic 

molecules, and develop two systematic methods for the enhancement of this behavior in anionic 

parent molecules.  Here we show that Huckel’s rule can still be used for the induction of 

superhalogen behavior in non-anionic parent molecules.  This can be achieved by simultaneously 

replacing the C atoms in the ring with B, Al, or Ga, to make the ring one electron shy of the 4n+2 

electrons needed for aromatic stability, and the H atoms in the ligand with F or CN moieties to 

enhance the electron affinity of the ring.  This can be seen in scheme 1 and 2 for cyclopropenyl 
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cation and benzene respectively. Note that both molecules are aromatic with n=0 in the former 

and n=1 in the latter. In addition, neutral BC2H3 is isoelectronic with C3H3
+
 and hence aromatic 

while B2CH3 would require one extra electron to be aromatic. Similarly, BC5H6 would also 

require one electron to be aromatic. Because aromaticity rule will stabilize the negative ions, we 

hypothesize that their corresponding neutrals should possess large electron affinities.  We then 

explore larger organic ring structures to see how these methods develop electron affinity with a 

change in molecular size. 

   

Scheme 1. A schematic representation of the creation of an organic superhalogen from C3H3
+
 

 

 

 

 

 

 

Scheme 2. A schematic representation of the creation of an organic superhalogen from C6H6 
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Theoretical Methods 

 

The total energies and equilibrium geometries of the most stable anions and 

corresponding neutral molecules were calculated using Density Functional Theory (DFT) and 

B3LYP hybrid functional
 [34,35]

 for exchange-correlation potential with the 6-311+G(d) basis set. 

Select calculations were done using CCSD ab initio methods as well as comparisons to 

experiment where available were done to confirm the accuracy of the results.  Where applicable 

the SSD basis set was used for transition metals. Frequency analysis was also performed at the 

same level of theory to ensure that there are no imaginary frequencies and the structure belongs 

to a minimum in the potential energy surface.   

2.1 Schrodinger and Born-Oppenheimer 

 In 1927 Schrodinger presented his waveform equation that would become the basis for a 

theoretical approach to the study of the electronic properties of atoms and molecules.  According 

to the time-independent Schrodinger equation 

 ĤΨ=EΨ (2.1) 

the Hamiltonian operator Ĥ acting on the wave function Ψ will result in the scalar Eigen value E 

times the wave function.  The Hamiltonian operator for a many particle system can be written as  

    
  

   
∑   

  
  

   
∑   

    ∑ ∑
  

   
   ∑ ∑

 

   
   ∑ ∑

    

   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
    

  (2.2) 

where N is the number of electrons, M the number of atoms, ZA and ZB are atomic numbers, MA 

the mass of the nucleus and me the mass of an electron.  The indices for the summations are i and 

j for electrons and A and B for nuclei, and ħ is the Planck’s constant divided by 2π.  The terms, in 
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order are; kinetic energy for electron, T; kinetic energy for nucleus, T; electrostatic nuclei-

electron interaction, VNe; electron-electron interaction potential, Vee; and nucleus-nucleus 

interaction potential.  Negative terms are attractive and positive terms are repulsive, consistent 

with the convention.  Solving equation (2.1) for exact solutions of Ψ however has thwarted 

scientists since the equation was proposed.  Large systems of particles are just too complex, and 

even with modern computers would require too much time to find a solution.  Many 

approximations have been made over the last century that brings us to the density functional 

theory (DFT) that we use today.   

 One of the first approximations that was made was to assume that the nuclear kinetic 

energy is zero (the nuclei are inert) leading to a constant nucleus-nucleus interaction term in eq. 

(2.2).  This is called the Born-Oppenheimer approximation
36

, which only holds true when 

MA>>me.  This allows us to ignore two terms of eq. (2.2) leaving  

     
  

   
∑   

    ∑ ∑
  

   
   ∑ ∑

 

   
  

   
 
   

 
   

 
   

 
    (2.3) 

While this approximation greatly simplified the calculation, it can only be solved exactly for a 

one electron system.  In order to solve larger systems further approximations will need to be 

made.   

2.2 Hartree Method 

In 1928 Hartree proposed a new approximation
37

 wherein he suggested that an N electron 

problem could be treated as N one-electron problems.  His new Hamiltonian was  

    ∑ [ 
 

 
  

  ∑
  

   

 
      ∑

 

   

 
   ]  ∑ [    ] 

   
 
   . (2.4) 

This leads to a wave function that is a simple linear combination of spin orbital wave functions  

                                     (2.5) 
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where χi is the spin orbital of the ith electron and xi its position, known as the Hartree product 

wave function.  Solutions can be found with the Hartree eigenvalue equation 

                     . (2.6) 

This leads to the eigenvalue, E, of the Schrodinger equation becoming the sum of the individual 

spin orbital energies 

              . (2.7) 

While this approximation successfully allows simple solutions of eq. (2.1) it has two major 

failings.  First, the process of interchanging electron coordinates is not anti-symmetric, and 

second, it does not obey Pauli’s Exclusion Principle.  

2.3 Hartree-Fock Method 

Later in 1928  Fock improved upon Hartree’s method with the Hartree-Fock approximation
38

.  

Fock used an anti-symetric determinant of N one-electron wave functions, known as a Slater 

determinant
39

, 

                 
 

√  
|

             

             
   

      

      
 

                   

|  . (2.8) 

The 
 

√  
 term is a normalization term and the determinant inherently includes the electron-

electron repulsive potential.  It is anti-symmetric with respect to electron coordinate interchange, 

and obeys Pauli’s Exclusion principle as it becomes zero when two electrons have the same spin 

orbital.  This gives the Hartree-Fock eigenvalue equation 

                       (2.9) 

Where f(i) is the Fock operator 

        
 

 
  

  ∑
  

   

 
           (2.10) 
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Replacing the complicated electron-electron repulsive potential term with the simpler one 

electron Hartree-Fock potential V
HF

(i), 

         ∑              
 
 , (2.11) 

where J and K are Coulomb and exchange operators.  Thus the total energy of the Hartree-Fock 

approximation can be found to be  

    ⟨   | |   ⟩  ∑   
 
    

 

 
∑ ∑ (       )

 
   

 
    ∑   

 
    ⟨   |   |   ⟩, (2.12) 

where Jij is the Coulomb integral 

      ⟨  |  ⟩  ∫      
|      |

 |  (  )|
 

   
 (2.13) 

And Kij is the exchange integral  

      ⟨  |  ⟩  ∫      
  

       
 (  )        (  )

   
. (2.14) 

While the Hartree-Fock approximation is more accurate and fixes many of the problems of the 

Hartree approximation, due to this Coulomb and exchange terms, it is much more 

computationally intensive than the Hartree method.  The Hartree-Fock method also fails to 

account for short-range electron-electron correlation due to the use of a single Slater determinant 

that averages the interactions rather than finding them explicitly.  This issue can be resolved by 

using a linear combination of Slater determinants, a process known as Configuration Interaction 

method (CI). This however would further increase computation time.  Other methods that have 

developed from Hartree-Fock include Coupled Cluster (CC) and Møller-Plesset perturbation 

theory (MP).  All of these methods underestimate the exact result, so their error is predictable. In 

addition, they are very computation intensive, being based on HF.   

2.4 Density Functional Theory 
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Density functional theory was proposed as an alternative to the HF derived methods where the 

electron charge density ρ as given by 

        ∫    ∫                      , for N electrons (2.15) 

is used instead of the wave function to compute the total energy.   

2.4.1 Hohenberg-Khon Formulation 

 It was first proposed in 1964 by Hohenburg and Kohn
40

 who claimed that an N-electron 

system could be reduced from a 3N coordinate problem to a 3 coordinate problem by using 

functional of the electron density.  Using eq. (2.3) and the variational principle the energy can be 

found by minimizing the functional 

       
⟨ | | ⟩

⟨ | ⟩
. (2.16) 

The solution is determined by the number of electrons N and the external potential V( ⃑) defined 

as the nucleus-electron interaction term 

     ⃑    ∑
  

   

 
   . (2.17) 

The Hohenberg-Khon Formulation claims that the total energy can be determined from the 

electron density ρ.  Instead of using the Hamiltonian we can therefore find the total energy by 

using 

                         , (2.18) 

using terms similar to the Schrodinger Hamiltonian (2.2).  The VNe term can be rewritten as  

      ∫   ⃑    ⃑   ⃑ . (2.19) 

Now Hohenburg and Kohn use the variational principle to state that if    ⃑   ⃑    and 

∫   ⃑   ⃑    are true, then  

      (    ). (2.20) 
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With an appropriate approximation for the kinetic energy and electron-electron terms the density 

can now be used to find potentially accurate solutions for the total energy of the system.   

2.4.2 Exchange-Correlation 

Using the Kohn-Sham equations
41

 the potential can be redefined as an effective potential  

                 , (2.21) 

Where Vc is the classical Coulomb potential, Vxc is the exchange-correlation potential and VNe is 

the familiar nucleus-electron interaction.  It is the exchange-correlation term that provides such 

difficulty in finding a solution.  The exchange-correlation energy which can be related to the 

potential by 

      
       

    ⃑ 
 (2.22) 

can be approximated as  

     (   ⃑ )              ∫   ⃑     ⃑  ∫   ⃑     ⃑, (2.23) 

where Ex is the exchange energy found with the slater determinant, and Ec is the correlation 

energy. 

2.4.3 Local Density Approximation 

In order to better resolve a solution for the Exc term a new approximation can be made.  If we 

treat the electron density as if it were a homogenous gas, then ρ would be slowly varying with r.  

We can define the LDA approximation of Ex as  

      
 

 
(
 

 
)
 

 ⁄

∫   ⃑ 
 

 ⁄   ⃑. (2.24) 

The corresponding potential is 

         (
 

 
)
 

 ⁄

   ⃑ 
 

 ⁄ . (2.25) 
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LDA provides a computationally fast way to approximate the exchange energy. However, it is 

not accurate for systems where the electron density in inhomogenious.   

2.4.4 Generalized Gradient Approximation 

The addition of the gradient of ρ to the Local Density Approximation, known as GGA, has the 

form  

        ∫   ⃑   (   ⃑      ⃑ )  ⃑. (2.26) 

GGA functionals can improve over the accuracy of LDA by matching the density values as well 

as its slope, for a minimal increase in cost.  Further improvements added are things like 

appropriate r dependence. 

2.5 B3LYP and Hybrid Density Functionals 

Hybrid density functionals are functionals that fractionally combine multiple different methods.  

In these hybrids, there is usually a Hartree-Fock term in addition to one or more DFT terms.  

Each term is usually added to achieve accuracy in some particular area that HF or the other 

methods do not accurately provide.  B3LYP
42

 is one such hybrid functional that combines 

Hartree-Fock with an LDA Slater determinant, Becke’s GGA exchange correction, and Lee, 

Yang, and Parr’s GGA correlation functional. This is represented as 

    
        

         
     

          
      

         
      

    . (2.27) 

Here a0=0.20, ax=0.72, and ac=0.81 are determined by fitting the solutions to experimental data.   

2.6 Basis Sets 

We define the molecular orbitals Ψi as a linear combination of one electron orbitals, χμ, 

which we will call basis functions.  This can be written as  

    ∑      
 
    (2.28) 
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where Cμi are the molecular expansion coefficients and χμ is the μ-th orbital of N atomic orbitals.  

These functionals are often atomic orbitals themselves.  There are two types of orbitals 

commonly used, Slater Type Orbitals (STO)
43

 and Gaussian Type Orbitals (GTO)
44

.  STO are 

exponential decay functions with spherical harmonics that make them computationally expensive 

so, instead GTO functions are often used. GTO functions take the form  

                          
 (2.29) 

separating the function into its radial (ζ) and angular (lx, ly, lz) components.   GTO functions are 

used to replace STO functions and are computationally much faster than STO functions; 

however, their accuracy breaks down at small r where the GTO has a slope of zero. The 

computation time can be further reduced through contraction of GTO functions with fixed 

coefficients, 

    
    ∑      

  (     )
 
     (2.30) 

Here diμ is the contraction coefficients, L is the length of the contraction, and ζiμ are the 

contraction exponents.  The basis set can now be calculated using varying numbers of these 

contracted orbitals.  An example would be the 6-311G basis set.  This means that the core 

orbitals are being represented with 6 GTOs contracted together, while the valence orbital is 

represented with three s-orbital GTOs, one p-orbital GTO, and one d-orbital GTO.  The addition 

of polarization functions, represented by adding a *, can improve the atomic bonding accuracy; 

while the addition of diffuse functions, represented by a +, can improve the accuracy of long 

distance orbitals.  The 6-311+G(d) basis set was predominately used for this work.  
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Results 

 

 

3.1 Results and discussion of superhalogen behavior by core or ligand substitution in 

aromatic molecules using C5H5 

 As cyclopentadiene (C5H5) is already an aromatic anion it appeared to be a good starting 

point for the exploration into possible superhalogen behavior.   A systematic approach was taken 

to explore two possible mechanisms independently to verify each of their merits; core 

substitutions, and ligand substitutions.   

3.1.1 Validation of theoretical method 

 To validate our theoretical method for use on aromatic compounds we compare the 

results for C5H5 and C6H6 to experiment.  The equilibrium structures, bond lengths, and 

calculated electron affinities (EA) are given in Fig. 1 and Table 1 alongside their experimental 

values. The C-C bond lengths are 1.37, 1.44, and 1.48 Å for C5H5 and 1.39 Å for C6H6.  The C-H 

bond lengths of C5H5 and C6H6 are 1.08 Å and 1.09 Å, respectively.  These agree well with 

corresponding experimental values of C-C bonds, namely, 1.34, 1.46, and 1.54 Å and C-H 

bond,1.08 Å of C5H5, and C-C bond, 1.40 Å, and  C-H bond,1.09 Å of C6H6. Similarly, the 

calculated EA of benzene (C6H6), which is aromatic, is -1.33 eV and is in good agreement with 

the experimental value of -1.15 eV. However, the fit between the experiment and theory for the 

negative EAs may be coincidental because of the limits of the computational model in 

characterizing species with unbound electrons. We have recalculated the EA of benzene at the 
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CCSD level of theory and found it to be -1.83 eV. It is expected that C5H5 which needs one extra 

electron to be aromatic would have a larger electron affinity than that of C6H6. Although this is 

indeed the case and the calculated EA of C5H5 is +1.72 eV (compared to experimental value of 

+1.79 eV), it is much smaller than that of a halogen atom.  At the CCSD level of theory the EA 

of C5H5 is +1.36 eV. Thus, the DFT/B3LYP level of theory overestimates the electron affinity 

compared to CCSD level of theory. The question then is: can molecules, using aromaticity rules, 

be designed such that their EAs are larger than those of halogen atoms? To examine this 

possibility a systematic approach was adopted. 

3.1.2 Ligand substitution: CnXn (X= F, CF3, NCO, CN, BO2; n=5, 6) 

First, we try to design aromatic superhalogens by ligand substitution in C5H5, keeping the 

aromatic core intact. To do so we replace H in C5H5 by different ligands such as F, CF3, NCO, 

CN, and BO2 since these are far more electronegative than H. For example, the electron affinities 

of F, CF3, NCO, CN, BO2 are, respectively, 3.40, 1.89, 3.58, 4.07 and 4.35 eV while that of H is 

only 0.75 eV. The equilibrium geometries of C5X5 (X= F, CF3, NCO, CN, BO2) molecules are 

given in Fig 2. Note that in the case of C5(CN)5 and C5(NCO)5, the C atom on the ring can either 

bind to the C or N atom of CN and N or O atom of NCO, respectively. In addition, in the case 

Fig. 1 Equilibrium geometries of C5H5 and C6H6. The bond lengths are given in Å.  The bond lengths in brackets are those of 

the anion. 
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C5(BO2)5 the ligands can dimerize and bind to the C atoms in the ring. Only the lowest energy 

configurations are given in Fig. 2.  Similar calculations were repeated for the benzene, C6H6, 

where the H atoms were replaced by F, CN, BO2 ligands. The equilibrium geometries of the 

C6X6 (X= F, CN, BO2) molecules along with their electron affinities can be found later in section 

3.4. 

The CF bond length in C5F5 is elongated over that of CH bond in C5H5 by 0.24 Å. In other 

molecules in Fig. 2 the bond linking the C atom in the ring to the nearest atom in the ligand 

varies between 1.37 Å to 1.52 Å.  These bonds are stretched further in the corresponding anions. 

The C-C bonds in the ring, however, are not affected significantly by the different ligands. The 

ground state geometry of C5(NCO)5 is marked by the C atom in the ring binding to the N atom in 

the ligand and is 7.80 eV lower than its isomer where the C atom in the ring binds to the O atom 

in the ligand. In the lowest energy structure of C5(CN)5, the C atoms in the ring bind to the C 

atoms in the ligands while its isomer with C binding to N lies 5.40 eV above in energy. The 

lowest energy structure of C5(BO2)5 departs from the other structures in Fig. 2. Here two of the 

BO2 moieties dimerize and bind to four of the carbon atoms in the ring while the fifth carbon 

atom is bound to the remaining BO2 ligand. The isomer where each of the C atoms is bound to a 

single BO2 unit lays 2.51 eV above the lowest energy structure. This is because the BO2 moieties 

gain 1.70 eV of energy by forming a dimer. This, as we will see in the following, has important 

effect on the expected superhalogen property of the C5(BO2)5 molecule. 
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    The EAs of C6F6 and C5F5 are calculated to be 0.75 eV and 2.68 eV, respectively. Although 

this is a considerable improvement over the values in C6H6 and C5H5, replacing H by F does not 

lead to a superhalogen. However, the situation changes with different ligands. The EA of 

C5(CN)5 is 5.59 eV, making it a superhalogen. To confirm the accuracy of our method we also 

calculated the electron affinity of C5(CN)5 at the CCSD level of theory.  The corresponding 

value, namely 5.30 eV, is 0.3 eV less than that of the value at the CCSD level of theory. This is 

consistent with previous results
45

  that the electron affinities calculated at the DFT level of theory 

is usually accurate within about 0.2 eV.   The EA of C5(NCO)5 and C5(BO2)5 are 3.28, and 3.45 

eV, respectively. Although these are significantly enhanced over that of C5F5, C5(NCO)5 and 

C5(BO2)5 do not belong to the superhalogen category. The reason for C5(BO2)5 not becoming a 
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superhalogen is due to the preference of BO2 moieties to dimerize. Had that not been the case 

and each of the C atoms in the ring would have bound to individual BO2 moieties, the electron 

affinity of such a complex would have been 4.25 eV, making it a superhalogen. The probable 

reason for C5F5 and C5(NCO)5 not becoming a superhalogen is that the π donating nature of F 

and NCO works against it. The same conclusion also holds for BO2. CN as a ligand works better 

for making a superhalogen because of its dual nature. CN is not only a strong electron 

withdrawing group but also has a high electron affinity. So it is clear that electron withdrawing 

effect of the ligand drives the formation of superhalogen compounds.  

To check this idea further we considered CF3 ligand which belongs to an electron 

withdrawing group having low EA value (1.89 eV). To calculate EA of C5(CF3)5 molecules we 

tried to optimize both the neutral and the anion geometry. While we were successful in 

optimizing the neutral geometry, the optimization of its anion geometry led to problems. The 

imaginary negative frequencies were associated with the rotation of the CF3 unit in C5(CF3)5. 

Therefore, we calculated the vertical attachment energy (VAE) which is the energy gained by 

attaching an electron to the neutral structure without optimizing its geometry. In this sense the 

VAE is lower bound to the EA. The calculated VAE value of C5(CF3)5, namely 4.58 eV, 

Fig. 2 Equilibrium geometries of C5X5 (X= F, CF3, NCO, CN, BO2). The bond lengths are given in Å.  The bond lengths in 

brackets are those of the anions. 
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suggests that C5(CF3)5 indeed is a superhalogen molecule, owing to the electron withdrawing 

property of CF3 ligand. In fact we compared the VAE of C5(CF3)5 with that of C5(CN)5. We 

found that the VAE of C5(CN)5 is 5.46 eV which is smaller than its EA, namely 5.59 eV.  

3.1.3 Core substitution: Cn-mHn-mNm (n=5, 6; m=0-3) 

Now for the second possibility, core substitution, through the replacement of CH groups 

with N atoms. Note that this replacement leaves the total number of valence electrons unchanged 

as both CH and N are isoelectronic. Hence, aromatic properties would not be affected by this 

substitution.  However, the electron affinities of CH and N are, respectively, 0.077 eV and 0.073 

eV
46

. On this basis one might expect that successive replacement of CH with N in C6H6 and 

C5H5 may not lead to moieties with larger electron affinities. However, a previous experimental 

study had shown  

  
C5-mH5-mNm  C6-mH6-mNm 
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that the EA of C5H5N (pyridine) is -0.62 eV
34

 which is much more positive than the EA of 

isoelectronic C6H6, namely, -1.15 eV. To study the effect of successive replacement of CH 

groups with N atoms we calculated the structure and total energies of Cn-mHn-mNm (n=5, 6; m=1-

3) systematically.  In Fig. 3 we present the geometries of these molecules. The corresponding 

EAs are given in Table 1. The calculated EA of pyridine is -0.74 eV which is in good agreement 

with the experimental value (-0.62 eV) given in Table 1. We note that the EA increases steadily 

with increasing number of N substitutions. The calculated EA of pyrazine and s-triazine where 

the N atoms are substituted at the 1, 4 and 1, 3, 5 sites are -0.04 eV and +0.008, respectively. 

These also agree well (within the accuracy of the DFT methods) with the corresponding 

experimental values of +0.065 eV and +0.124 eV
34

.  We note that none of these molecules mimic 

halogens, let alone superhalogens.  No experimental values of the EA of C5-mH5-mNm (m > 0) 

Fig. 3 Equilibrium geometries of Cn-mHn-mNm (n=5, 6, m=0-3). The bond lengths are given in Å.  The bond lengths 

in brackets are those of the anion. 



www.manaraa.com

21 
 

were found. However, our computed values show that the EAs continue to increase and reach a 

value of 3.46 eV for C2H2N3, making this molecule a pseudo-halogen.  This shows that it is 

unlikely that modification of the core of C5H5 alone can render it with superhalogen properties. 

Table 2: Electron Affinities (in eV) of Cn-mHn-mNm (n=5, 6, m=0-3) 

 C6-mH6-mNm C5-mH5-mNm 

m, # N replaced Theory Experiment Theory Experiment 

0 -1.33(-1.83)* -1.15 1.73(1.36)* 1.79 

1 -0.74 -0.62 2.08  

2 -0.04 0.065 2.58  

3 0.008 0.124 3.46  

* Value given in parenthesis is the data calculated at CCSD/6-311+G(d) 

 

3.1.4 Core substitution with ring annulation: C13-mH9-m Nm (m=0-3, 9) 

To search for other routes that can enable organic molecules to have electron affinities 

higher than that of C2H2N3, we drew inspiration from an earlier work by Gonzales e.t al.
47

 where 

the authors studied a series of molecules by fusing a five-membered ring (C5H6) with increasing 

numbers of six-membered rings. Note that there are two ways to fuse these rings; the five-

membered ring may be fused either at the end of the chain or in the middle.  The first 

arrangement with one five-membered ring sandwiched between two six-membered rings is 

known as fluorene while the latter with a five-membered ring attached at the end of the two 

fused six-membered rings yields a molecule known as benzo[f]indene. At the B3LYP level of 

theory with the 6-311++G* basis sets the calculated EAs
47

 of the radicals formed by cleavage of 
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a C-H bond in the 5-membered ring, i.e., cyclopentadienyl (C5H6), indenyl (C9H8), and fluorenyl 

(C13H10), were found to be -0.66 eV, -0.55 eV, and -0.27 eV, respectively. Note that the parent 

molecules have saturated carbons in the 5-membered ring and the C-H cleavage at this carbon is 

needed to give a fully delocalized π-system.  Addition of an electron gives a closed-shell anion 

with an aromatic electron count in the π-system. The trend clearly shows that by increasing the 

length of the organic framework the electron affinity can steadily increase.  This is consistent 

with the expectation that electron affinities tend to increase as electrons are more delocalized.  

 Since replacement of CH with N or H with F as well as incorporating benzoannulated 

cyclopentadienyl units tend to increase electron affinities, we considered the base structure of the 

fluorenyl radical (C13H9) as a starting point in our search for aromatic superhalogens. Note that 

C13H9
-
 satisfies the aromaticity rules.  Similar to what was done for CnHn (n=5, 6) we first 

replaced H with F.  This did not increase EAs significantly. These results are given later in 

section 3.4. Next up to three CH groups were replaced with three N atoms successively by 

considering both the fluorene and benz[f]indene frameworks.  

3.1.4.1 Equilibrium Geometries of the negative ions 

In photoelectron spectroscopy experiments (PES) the starting point is the negative ion. 

Therefore, we first present the optimized geometries of the most stable isomer of the anionic C13-

mH9-mNm (m=0-3) molecules in Fig. 4(a-e). The ground state of the anionic C13H9 molecule in 

Fig. 4(a) has the five-membered ring sandwiched between the two six-membered rings (fluorene 

structure). The higher energy isomer has the benz[f]indene structure and lies only 0.29 eV above 

the ground state (see Fig. 5(a)).  These results agree with earlier studies of Gonzales et. al.
47

.  
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When one of the CH groups is replaced by an N atom, the preferred geometry of the anionic 

C12H8N continues to have the fluorene structure. The N atom occupies the 9-position (Fig. 4(b)). 

The bond lengths are symmetric from left to right and vary from 1.39 Å to 1.41 Å.  The nitrogen 

bonds shorten to 1.36 Å.  In Fig. 5(b) we show the geometry of the next higher energy isomer 

lying 0.65 eV above the ground state. It has the benz[f]indene structure where the N atom 

occupies the end site of the five-membered ring.  

Fig. 4: Equilibrium geometries of anionic C13-mH9-mNm (m=0-3, 9) molecules.  Bond 

lengths are in Å. 



www.manaraa.com

24 
 

Next we discuss the replacement of two CH groups with two N atoms. All possible sites for the 

N atoms were tried and the preferred structure of the anionic C11H7N2 molecule is shown in Fig. 

4(c). Unlike the C12H8N structure, the C11H7N2 anion has the benz[f]indene structure with the N 

atoms occupying next nearest neighbor sites in the five-membered ring.  The four nitrogen bonds 

range in length from 1.34 Å to 1.37 Å, while the benzene ring’s bond lengths stay unchanged.  

The bonds in the five-membered ring also increase, but only slightly to 1.45 Å.  Preferred 

locations of N atoms in the next higher energy isomer given in Fig. 5(c) are different as is the 

Fig. 5: Geometries of next higher energy isomers of anionic C13-mH9-mNm (m=0-3, 9) molecules.  Bond 

lengths are in Å. 
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structure. The anion assumes the fluorene structure and lays 0.1 eV above the ground state.  One 

N atom occupies the 9-position of fluorene while the second occupies the farthest site in the six-

membered ring. We note that even though the two isomers are rather close in energy, a 

substantial energy barrier will be involved in going from the benz[f]indene structure to the 

fluorine structure. Thus, if the molecules are born as anions, it is the VDE of the benz[f]indene 

structure that the PES experiment will measure.  

The preferred geometry of the C10H6N3 anion is shown in Fig. 4(d). It has again the 

benz[f]indene structure with one of the N atom occupying the apex site of the five-membered 

ring while the other two occupy opposite sites in the central six-membered ring. The only change 

that occurs in the bonds is that those adjacent to the third nitrogen shorten to 1.33 Å and 1.36 Å 

leaving the far side of the structure unaffected. The corresponding higher energy isomer is shown 

in Fig. 5(d). Here the anion has the fluorene geometry lying only 0.06 eV above the ground state.  

One N atom occupies the apex site of the five-membered ring while the other two occupy next 

nearest neighbor sites of the six-membered ring. Both isomers can be considered to be 

energetically degenerate and in a PES experiment both are likely to be present. As a general 

remark, we note that by the time two CH groups are replaced by two N atoms, the anions assume 

benz[f]indene form.  

For reasons that will be clear in the following sub-section we next considered structures 

where all the CH groups were replaced with N atoms. The preferred geometry of the C4N9 anion 

is shown in Fig. 4(e). It assumes the benz[f]indene structure. The corresponding geometry of the 

higher energy isomer is given in Fig. 5(e). The fluorene structure of the anion is 1.18 eV less 

stable than the benz[f]indene form.  
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3.1.4.2 Vertical Detachment Energies 

The vertical detachment energies (VDE) of C13-mH9-mNm (m=0-3, 9) molecules are given 

in Table 2. The VDE of C13H9 is 1.82 eV.  It increases by 0.69 eV when only one CH group is 

replaced by N, namely the VDE of C12H8N is 2.51 eV. The VDEs of C11H7N2 and C10H6N3 are, 

respectively, 2.94 eV and 3.57 eV.  Although the VDEs increase with the successive replacement 

of CH groups with N atoms, C11H7N2 and C10H6N3 are still far from being a superhalogen. At 

best, C10H6N3 can be termed as a pseudohalogen as its electron affinity approaches that of Cl. 

Note that while none of these molecules qualify as superhalogens, the VDEs steadily rise with 

the replacement of CH groups with isoelectronic N. Consequently, we tried the ultimate structure 

where all the CH groups are replaced with N atoms. This leads to the molecule with formula 

C4N9 which has a VDE of 5.28 eV, clearly making it a superhalogen.  

3.1.4.3 Ground State Geometries of Neutral Molecules, Electron Affinities and Adiabatic 

Detachment Energies 

In a PES experiment the first peak in the spectrum corresponds to the vertical detachment 

energy (VDE) which signifies the least energy needed to remove the extra electron from the 

anion without changing its structure. 

 

# CH groups 

replaced by N 

VDE EA ADE 

0 1.82 1.74 1.74 

1 2.51 2.41 2.43 

2 2.94 2.77 2.88 

Table 2: VDE, EA, and ADE (in eV) of C13-mH9-mNm for m=0-3, 9. 
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3 3.57 3.10 3.32 

9 5.28 4.58 4.58 

 

However, following the electron detachment the neutral cluster will relax. In most cases the 

neutral cluster will reach its ground state. However, if the geometries of the ground states of the 

anion and its corresponding neutral are very different and are separated by a large energy barrier, 

the neutral cluster, following electron detachment, will relax to its nearest potential energy 

minimum. The difference between the total energy of the anion and its structurally similar 

Fig. 6: Ground state geometries of neutral C13-mH9-mNm (m=0-3, 9) molecules.  Bond lengths are in Å. 
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neutral is known as adiabatic detachment energy (ADE) while that between the ground states of 

the anion and its neutral is referred to as the electron affinity (EA).  In most cases the ADE and 

EA values are rather close, although exceptions do exist. To see how different are the lowest 

energy geometries of the neutral C13-mH9-m Nm (m=0-3, 9) molecules from their anions, we have 

optimized their structures. The results are presented in Fig. 6(a-e). The geometries of the next 

higher energy isomers are given in Fig. 7. The ground state of neutral C13H9 has the fluorene 

structure, same as that of the anion. The higher energy isomer with the benz[f]indene structure 

lies 0.23 eV above the fluorene structure.  Although neutral C12H8N has the same fluorene 

structure as its anion, the placement of the N atom is different. In the neutral structure, nitrogen 

occupies the base of the benzene ring adjacent to the five-membered ring.  As in the anion, the 

nitrogen bonds are shortened to 1.34 and 1.32 Å. The rest of the benzene bonds are 1.40 Å, with 

the exception of the bonds symmetric with the nitrogen bonds which are 1.38 Å.  The bonds of 

the five-membered ring are 1.43 Å for four sides and the base is 1.47 Å. The geometries of 

neutral C11H7N2 and C10H6N3 have fluorene structure while their anions have the benz[f]indene 

structure.   
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The nitrogen atoms occupy next nearest neighbor sites of a six-membered ring. In C10H6N3 the 

third nitrogen prefers the second six-membered ring and occupies the CH site closest to the five-

membered ring.  Here, the only change to the bond lengths is that the bonds associated with the 

third nitrogen atom reduce to 1.34 Å. The ground state of neutral C4N9 has the same 

benz[f]indene structure as its anion. The EAs and ADEs of C13-mH9-m Nm (m=0-3, 9) molecules 

are listed in Table 2. Note that in spite of the large differences in the geometries of the anion and 

neutral, the EA values are not very different from those of the VDEs. This is because changing 

Fig. 7: Geometries of next higher energy isomers of neutral C13-mH9-mNm (m=0-3, 9) molecules.  

Bond lengths are in Å. 
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the location of N atoms does not affect the energies significantly, although they will face 

significant energy barriers to do so.  

3.1.5 Thermal Stability 

We note from the above that C4N9 is a superhalogen and is vibrationally stable since all 

frequencies are positive. But, is it thermally stable? To examine its thermodynamic stability we 

calculated the dissociation energies of neutral C4N9 against possible fragmentation pathways.  

First, we considered fragmentation into C4N7+N2 and C4N5+2N2. The first channel is 

endothermic by 1.11 eV while the second one is exothermic by 0.47 eV [see Fig. 8(a)].  The 

fragmentation of C4N9 where the N2 molecule is removed from the five-membered ring is 

endothermic by 0.74 eV. To see if a superhalogen can be created that is thermally stable we 

considered C6N7H2 where the two N atoms in the C4N9 molecule are replaced by two CH groups 

[see Fig. 8(b)]. This structure is stable against the fragmentation pathway where N2 breaks away 

from the five-membered ring. And, most importantly, it is a superhalogen with vertical 

detachment energy of 4.66 eV.   

 

+ 

Fig. 8(a): Fragmentation reaction pathway 

Fig. 8(b): C6N7H2, thermally stable 
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3.1.6 Beyond tricyclic poly aromatic hydrocarbons (PAH) 

We note that Gonzales et. al.
47

 had shown that by increasing the number of benzene rings the 

EA of a molecule could be increased.   To see if replacement of CH groups with N and further 

addition of benzene rings can continue to yield moieties with higher electron affinities, we 

studied the structure and properties by successively adding up to six benzene rings to a five-

membered ring. The corresponding geometries of the anions are given in Fig. 9. The resulting 

EAs and VDEs are illustrated in Fig. 10, and the values are presented in Table 3.  Note that the 

EAs and VDEs continue to rise and reach a value of 5.12 and 5.33 eV, respectively. From the 

NBO charge distributions we found the additional charge to be mostly associated with the 

nitrogen located at sites in the five-membered ring.  The nitrogen atoms located in the six-

 

Fig. 9: Ground state geometries of anionic PAH molecules.  Bond lengths are in Å. 
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membered rings have a diminishing charge with increasing distance from the five-membered 

ring. 

 

 EA VDE 

1 Benzene 4.03 eV 4.36 eV 

2 Benzene 4.36 eV 4.66 eV 

3 Benzene 4.62 eV 4.95 eV 

4 Benzene 4.82 eV 5.09 eV 

5 Benzene 4.98 eV 5.23 eV 

6 Benzene 5.12 eV 5.33 eV 
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 Fig. 10: EA and VDE of larger nitrogen replaced PAH molecules 

Table 3: Electron Affinities (EA) and Vertical Detachment Energies (VDE) of poly aromatic hydrocarbons 
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3.1.7 Aromaticity 

Aromaticity can be considered as an indicator of cyclic delocalization of electrons moving 

freely around the ring. There are different methods available in the literature to predict the 

aromaticity of a molecule. Some of these are diamagnetic susceptibility exaltation, electron 

localization function (ELF), harmonic oscillator model of aromaticity (HOMA), nucleus-

independent chemical shift (NICS), etc. Here we have adopted the NICS method developed by 

Schleyer and coworkers
29,48,49

. NICS is defined as the negative of the absolute magnetic 

shielding computed at the un-weighted geometric center of an aromatic or anti-aromatic ring 

[NICS(0)], or 1A° above the ring [NICS(1)]. Significantly negative NICS values indicate the 

presence of a diatropic ring current and, therefore, aromaticity in the system. To confirm the 

aromaticity of these molecules we calculated the chemical shift
48,49 

at the center of the ring and 1 

Å above it for C5X5 (X= F, NCO, CN, BO2) as well as the first four molecules in Fig. 9. We also 

studied how these change with ligand and size. We recognize that the increase in the NICS value 

above the ring is due to the existence of π electrons.  Fig. 11 shows the structures with their 

calculated NICS values (in ppm).  The NICS value 1 Å above the plane is listed first, and the 

NICS value at the center is listed second in italics. 

We have found that for all the cases of C5X5 (X= F, NCO, CN, BO2) (see Fig. 11(a)) the 

molecules are aromatic due to their negative NICS values. In fact the aromaticity increases in 

comparison to that of the cyclopentadienyl anion. We also found that with an increase in 

aromaticity, the EA also increases. For the second sets of molecule (Fig 11 (b)) the 

cyclopentadienyl anion starts out with the highest NICS value for both in the plane and above it.  

As more benzene rings are added, the aromaticity in the ring decreases.  The NICS value of the 

benzene ring at the end of the chain (marked “1”) also decreases with increasing chain length.  
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However, the aromatcity of the inner benzene rings marked “2-4” increases with chain length, 

with each subsequent ring starting with a smaller NICS value than the ones before.  The lowest 

value is -4.88 ppm which is significantly lower in magnitude than that of benzene’s NICS, 

namely -9.70 ppm. The decrease in the NICS value of the cyclopentadienyl anions as well as the 

end benzene ring means that the π electrons are less delocalized. This is compensated by the 

increase in the chemical shift of the inner benzene rings which suggests that the electrons in 

these rings are more delocalized. It is because of these competing effects that the increase in 

electron affinities with successive addition of benzene rings slows and tends to saturate.  

 

(a) 
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(b) 

 

3.1.8 Additional information 

 Calculations for C6X6 (X= F, CN, BO2) were carried out with the final geometries and EA 

values shown in Fig. 19.  As the C6X6 neutral already satisfies Huckel’s rule the addition of an 

electron removes this stability and so both the F and BO2 substitutions still result in a low EA, 

though still improved over the EA of benzene.  In the case of the CN substitution the EA is 

pseudohalogen in nature, which is attributed to the high electron withdrawing property of CN.  It 

is this property in combination with the EA of cyclopentadiene that led to such high EA in that 

case. 

Fig. 11: NICS values (in ppm) for C5X5 (X= F, NCO, CN, BO2) and first four PAH molecules of Fig. 9.  First value is 1 Å 

above plane, second value, in italics, is in the plane. 



www.manaraa.com

36 
 

The ground state geometries of F ligand substituted flourene and benz[f]indene were 

calculated for the neutral and anionic systems.  They had lower EA than their N core substituted 

counterparts so were not of importance, but have been included here for the sake of 

completeness.  Here the lowest energy for both neutral and anion were for the flourene structure 

(b) C6(CN)6, EA = 3.53 eV 

1.39 

(1.40) 

1.33 

(1.38) 

1.39 

(1.37) 

1.39 

(1.40) 

(a) C6F6, EA= 0.75 eV 

Fig. 12: Equilibrium geometries of the ground state of neutral and anionic C6Xn (n=6; X= F, CN, BO2). The bond lengths 

are given in Å.  The bond lengths in brackets are those of the anion. 

 

(c) C6(BO2)6, EA = 0.77 eV 
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with the benz[f]indene structure being a low level isomer with the energy difference ΔE shown in 

Fig. 13 along with the bond lengths.  We see that the isomer maintains a higher EA than the 

ground state; however both are lower than the EA of C4N9 (4.58eV) by at least 1.60eV, and thus 

the reason for their being discarded from the main discussion.    

 

(a) C13F9, Flourene, EA 2.87 eV 

1.33 

(1.36) 

1.38 

(1.40) 

1.39 

(1.37) 

1.40 

(1.41) 

1.46 

(1.43) 

1.42 

(1.40) 

1.43 

(1.46) 

1.40 

(1.41) 

1.40 

(1.38) 

(b) C13F9, Benz[f]indene, ∆E= 0.47 eV, EA=2.98 eV 

 

1.33 

(1.45) 

1.40 

(1.40) 

1.43 

(1.40) 

1.45 

(1.48) 

1.45 

(1.47) 

1.37 

(1.39) 

1.43 

(1.40) 

1.41 

(1.43) 

1.38 

(1.36) 

1.40 

(1.42) 

Fig. 13: Geometries of C13F9. The bond lengths are given in Å.  The bond lengths in brackets are those of the anion. 
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3.2 Results and discussion of induction of superhalogen behavior in organic molecules  

 We begin our discussion with cyclopropenyl cation (C3H3
+
). The optimized geometries of 

BC2H3 and [B2CY3]
-
 (Y=H, F, CN) along with their equilibrium distances are given in Figure 14. 

It is evident form the figure that all these molecules are planar. As mentioned before C3H3
+
 is a 

2π electronic system which makes it aromatic. Substitution one C by B leaves neutral BC2H3 still 

a 2π system. The calculated EA value of this molecule is -1.09 eV. As expected one more B 

substitution in the ring increases the EA to +1.70 eV. However, it does not make it a 

superhalogen by itself. We next substituted the H atoms with more electronegative F and CN 

moieties. This makes the EA to rise even further reaching a value of 2.98 eV for B2CF3 and 4.66 

eV for B2C(CN)3, the latter being a superhalogen!   

The Optimized geometries of anionic XC5H6 (X = B, Al, Ga) molecules along with their 

equilibrium distances are given in Figure 15. The calculated electron affinities (EA), vertical 

detachment energies (VDE) and nucleus independent chemical shift (NICS) values of these 

molecules are given in Table 4. 

 

Fig. 14: Optimized geometries of BC2H3, [B2CH3]
-, [B2CF3]

-, and [B2C(CN)3]
- 
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At the DFT/B3LYP level of theory the calculated EA of benzene (C6H6) is -1.30 eV which is in 

good agreement with the experimental value of -1.15 eV. When one C is replaced by B, Al, or 

Ga the EAs change substantially and become positive. This is because replacement of tetravalent 

C atom in C6H6 by trivalent B, Al or Ga causes the molecule to have 5π electrons which is one 

electron short off fulfilling the aromaticity rule.  To gain stability XC5H6 needs one more 

electron to become a 6π electronic system. Thus, the electron affinity increases.  

Note that the EA of XC5H6 decreases from 2.27 eV to 1.79 eV as we move down the group 

from B to Al to Ga. This is because the increase in size of X causes the C-X bond length to 

increase, resulting in less charge transfer between C and X. Even though the EA and VDE values 

of XC5H6 (X = B, Al, Ga) given in Table 4 are substantially higher than that of C6H6, the 

molecules are not superhalogens.  

 

 

Fig. 15: Optimized geometries of anionic XC5H6 (X = B, Al, Ga) 



www.manaraa.com

40 
 

 

Fig. 16: Optimized geometries of anionic XC5F6 (X = B, Al, Ga) 

We next replaced the H atoms in XC5Y6 (X = B, Al, Ga) by Y=F and CN moieties. The 

optimized anion geometries are given in Figures 16 and 17 for Y=F and CN, respectively. Note 

that in the case of CN moiety either C or N can bind to the B (Al, Ga) atom. The most stable 

geometry is the one when C of CN moiety binds to the metal atom. The corresponding EA and 

VDE values are given in Table 4. Incorporation of F makes EA values increase over that of the 

un-substituted molecule, but XC5F6 (X = B, Al, Ga) molecules are still not superhalogens. The 

situation is changed when we use CN as a ligand. Substitution of CN does not affect the ring 

geometry, but allows XC5(CN)6 (X = B, Al, Ga) molecules to have electron affinities as high as 

5.87 eV, making all of them  superhalogens.  The reason CN substitution works well over the F 

substitution to produce an organic superhalogen can be attributed to the strong electron 

withdrawing power of CN. Note that the electron affinity of CN is 3.86 eV
50

 while that of F is 

3.4 eV. This shows that with proper replacement of C and H, an organic molecule can become a 

superhalogen!  
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To demonstrate that these molecules are aromatic, we have calculated the chemical shift at 

the center and 1Å above the center by employing Nucleus Independent Chemical Shift (NICS) 

method.  

 

 

Fig. 17: Optimized geometries of anionic XC5(CN)6 (X = B, Al, Ga) 

These values are identified as NICS(0) and NICS(1), respectively. We see that all these 

molecules are aromatic due to their negative NICS values. Although π electron delocalization is 

disturbed when C in C6H6 is replaced by X (X= B, Al, Ga) as reflected by their NICS values 

(Table 4), they still behave like aromatic molecules because of the presence of charge separation 

on C-X bond, making electrons delocalized over the ring. From NBO charges we indeed find 

that there is charge distribution on the C-X bond. This becomes clear when we examine the 

HOMO-4 molecular orbital of C6H6 as well as those of XC5H6 (X = B, Al, Ga) depicted in Figure 

18. Ligands like F and CN makes the ring even more aromatic than C6H6 (Table 4).  
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Fig. 18: HOMO-4 Molecular Orbital of C6H6 , XC5H6 (X = B, Al, Ga) and HOMO-3 Molecular Orbital of  XC5(CN)6 (X = B, Al, 
Ga) Reflecting π Electron Cloud. 

 

Table 4: Calculated EA, VDE and NICS (0/1) for Different 2π and 6π Electronic Systems at B3LYP/6-31+G(d,p) level of 
theory. 

Systems EA(eV) VDE(eV) NICS(0) 
(ppm) 

NICS(1) 
(ppm) 

BC2H3 -1.09 -1.08 -18.94 -13.99 
B2CH3 

B2CF3 

B2C(CN)3 

C6H6 

BC5H6 

BC5F6 

BC5(CN)6 

AlC5H6 

AlC5F6 

AlC5(CN)6 

GaC5H6 

GaC5F6 

GaC5(CN)6 

1.70 
2.98 
4.66 
-1.30 
2.27 
3.19 
5.87 
1.79 
2.70 
5.21 
1.85 
2.88 
5.31 

2.39 
3.92 
5.32 
-1.10 
2.35 
3.49 
5.93 
1.84 
2.92 
5.27 
1.91 
3.11 
5.36 

 

-16.70 
-38.66 
-23.28 
-8.12 
-5.85 
-17.47 
-8.71 
-4.00 
-15.00 
-6.58 
-4.20 
-15.43 
-6.83 

-14.27 
-10.89 
-13.34 
-10.19 
-7.85 
-10.87 
-8.40 
-5.23 
-9.57 
-5.82 
-5.81 
-9.95 
-6.30 
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To examine if there is a critical number of CN molecules that is required before metal substituted 

C in C6H6 can be a superhalogen, we focused on BC5H6-m(CN)m (m= 0-6).   For each value of m 

we have calculated the equilibrium geometry of neutral and anionic BC5H6-m(CN)m molecules 

and determined their EAs and VDEs.  NICS method was used to calculate their aromaticity. The 

variation of VDE and NICS values as function of CN ligands are given in Figure 19. We see that 

with gradual substitution of H with CN the VDEs of BC5H6-m(CN)m molecules rise, reaching the 

superhalogen value at m=2.  The NICS values also rise with VDE and the molecules become 

increasingly aromatic. The highest values of VDE and NICS(0), namely, 5.93 eV and -8.71 ppm 

are reached for BC5(CN)6. 

 

Fig. 19: Variation of VDE and NICS upon gradual CN substitution in BC5H6 
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Note that the NICS(0) value of BC5(CN)6 is even higher than that of C6H6, namely,  -8.12 ppm. 

However, the NICS(1) value (-8.40 ppm) of BC5(CN)6 is lower than that (-10.17 ppm) of C6H6. 

This is understandable because the B atom in the ring decreases the π electron delocalization. 

 

 

Fig. 20: Optimized geometries of anionic BC13H4(CN)10, BC17H6(CN)12 and BC21H8(CN)14 

We know that higher π systems such as C14H14, C18H18, and C22H22 annulene molecules are 

aromatic because they too obey (4n+2) π (n= 3, 4 and 5) aromaticity rule. We follow the same 

procedure depicted in schemes 1 and 2 to see if these molecules can also be made superhalogens. 

We found that the simultaneous substitution of one C by B in the ring and H atoms with CN 

moieties makes BC13H4(CN)10, BC17H6(CN)12 and BC21H8(CN)14 (Figure 20) to have VDE 

values 5.91 eV, 5.88 eV and 5.95 eV, respectively. This finding again confirms their 

superhalogen behavior. We point out that in spite of their superhalogen behavior these molecules 

are no longer aromatic because they are non-planar due to CN substitution. 
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3.3 Continuing work: Metallo-organic hyperhalogens? 

If a traditional hyperholgen is made from attaching k+1 ligands to a metallic atom with a 

valence of k, then it should be possible to use the superhalogens in sections 3.1 and 3.2 as ligands 

in the formation of a hyperhalogen.  Ongoing research is exploring the possibility of these 

metallo-organic hyperhalogens existing as stable or meta-stable molecules with large EA. 

Several possible superhalogens are being tested with the form MXy where, M=Li, Mn, Mg, Al, 

and Zn; X =C4H4N, C3H3N2, BC5(CN)6, and C4H2N5; y=1-(k+1). As the number of ligands, y, is 

being varied from 1 to k+1, the onset of hyperhalogen behavior can be examined.  Further tests 

to guarantee that all structures exist on the potential energy surface will be conducted as well.   
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Conclusion 

 

 

 

Electron counting rules have played a major role in the design and synthesis of a large 

number of superhalogens over the past 30 years and these superhalogens have the potential to 

lead to new salts as well as to new chemistry. Among these rules, the octet rule applies to light 

atoms with atomic number less than 20, the 18-electron rule applies to molecules containing 

transition metal atoms, and the Wade-Mingos rule applies to electron deficient moieties such as 

borane-derivatives.  It has been shown that molecules that require only one extra electron to 

satisfy the above rules can have large electron affinities. However, no organic molecule that 

satisfies the aromaticity rule when one extra electron is added has been shown to mimic a 

halogen, let alone behaving as a superhalogen. Using density functional theory and hybrid 

functional (B3LYP) for exchange-correlation potential we have studied the geometries, 

electronic structure, thermal stability, vertical detachment energies, electron affinities, adiabatic 

detachment energies, and aromatic properties of a number of molecules formed by either by 

tailoring the ligands of cyclopentadienyl or by multiple benzo-annulations of cyclopentadienyl in 

conjunction with the substitution of CH groups with isoelectronic N atoms.  

These methods allowed the creation of aromatic superhalogens with electron affinities as 

high as 5.12-5.59 eV. These molecules consist of the formula C5X5 (X=CN, CF3) and 

C4+2nN5+2nH2 (n = 0 – 5). Both methods mentioned above show promise in creating 

superhalogens; the first method leads to higher EA, while the second can be tailored to yield 
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electron affinity of almost any desired value by altering chain length and N substitution sites.  

Thermal stability of these new species has been further examined by calculating the energies 

necessary to fragment these molecules using pre-determined fragmentation pathways. The 

Nucleus Independent Chemical Shift (NICS) method was used to confirm the aromaticity of 

these anions.  

A second method demonstrated that organic superhalogens can be created frome benzene 

by replacing C atoms with B and H ligand atoms with CN moieties.  Core atom substitution 

alone, however, is not sufficient to make these molecules a superhalogen. For this to happen, the 

ligands have to have higher electron affinity than F. The aromaticity rule is seen to play an 

important role in the design of these organic superhalogens.  

This study provides new possibilities for the synthesis of organic superhalogens as wells 

as new insight into the mechanisms through which Huckel’s rule of aromaticty plays an 

important part in their design. Such molecules could lead to new salts as well as new organic 

catalysts. 
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